A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

نویسندگان

  • Jair Montoya-Martínez
  • Antonio Artés-Rodríguez
  • Massimiliano Pontil
  • Lars K. Hansen
چکیده

We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the 21-norm of the coding matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios, the performance of our method with respect to the Group Lasso and Trace Norm regularizers when they are applied directly to the target matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations

Recovering low-rank and sparse matrices from incomplete or corrupted observations is an important problem in machine learning, statistics, bioinformatics, computer vision, as well as signal and image processing. In theory, this problem can be solved by the natural convex joint/mixed relaxations (i.e., l1-norm and trace norm) under certain conditions. However, all current provable algorithms suf...

متن کامل

Fast Sparse Selected Inversion 1285

We propose a fast structured selected inversion method for extracting the diagonal blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank structures. When A arises from the discretization of some PDEs and has a low-rank property (the intermediate dense matrices in the factorization have small off-diagonal numerical ranks), structured approximations of the d...

متن کامل

An Efficient Approach for Computing Optimal Low-Rank Regularized Inverse Matrices

Standard regularization methods that are used to compute solutions to ill-posed inverse problems require knowledge of the forward model. In many real-life applications, the forward model is not known, but training data is readily available. In this paper, we develop a new framework that uses training data, as a substitute for knowledge of the forward model, to compute an optimal low-rank regula...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

An algebraic multifrontal preconditioner that exploits the low-rank property

We present an algebraic structured preconditioner for the iterative solution of large sparse linear systems. The preconditioner is based on a multifrontal variant of sparse LU factorization used with nested dissection ordering. Multifrontal factorization amounts to a partial factorization of a sequence of logically dense frontal matrices, and the preconditioner is obtained if structured factori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014